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Molecular Basis for the Mullins Effect* 
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INTRODUCTION 

The physical phenomena now widely known as 
the “Mullins effect” was apparently first studied in 
detail by Holt’ in about 1930. He showed that if a 
vulcanized rubber which contains carbon black is 
stretched to a relative elongation a, = L/Lo and 
released, it will not follow the same stress-strain 
curve when it is stretched once again to this same 
elongation. Instead, the rubber appears much softer 
on the second stretch for elongations below 0,. 

Holt examined this behavior in some detail and 
showed that additional prestretches to am softened 
the rubber further, but to a lesser degree than was 
observed on the first prestretch. In addition, 
Holt showed that the rubber regains a portion of its 
stiffness if allowed to rest in the relaxed state. Al- 
though this recovery was very slow at room temper- 
ature, up to about 50% recovery was noted after 
about an hour at  100OC. Similar softening effects 
were noted in gum stocks at  exceedingly high 
elongations, but the effects were much less marked 
than in the filled stocks. 

This same effect was examined in more detail by 
M~llins2,~ after 1940. His results confirmed and 
greatly extended the earlier results of Holt. In 
addition, Mullins speculated about the mechanisms 
involved but came to no definite conclusion in that 
regard. Later,3 however, he and Tobin presented 
a phenomenological theory for the effect wherein 
they considered the rubber to be composed of hard 
and soft regions. They showed that their data 
could be described by assuming that some fraction 
of the hard regions became soft after a prestretch. 
No definite molecular basis for this process was 
proposed by Mullins and Tobin, although they 
speculated that either the breaking up of filler 
particle aggregates or the breaking loose of rubber 
to filler bonds might be involved. 

Later work by Blanchard and P a r k i n s ~ n ~ . ~  
confirmed and extended the data of Holt and 

* This research was sponsored by the Goodyear Tire and 
Rubber Company as part of a general program in support of 
fundamental research on synthetic rubber. 

Mullins. Further, these authors concluded that 
the softening was due to the breaking of rubber to 
filler bonds. They incorporated this idea into a 
semiempirical theory which agreed with their ex- 
periments. In addition, they obtained what they 
believed to be a distribution for the strength of the 
rubber-filler bonds. It will be seen in that which 
is to follow that their distribution probably does not 
represent what they thought it did, even though 
their basic ideas were correct. 

MOLECULAR PICTURE 

Consider the rubber molecules to be bound to the 
filler at certain sites on the filler surface. If the 
surface area of the filler in square centimeters is 
S per cubic centimeter of rubber compound and 
the average surface area per chain attachment is 
CT square centimeters, the number of attached chains 
will be @‘/a) per cubic centimeter of compound. 

When the rubber is stretched to a relative elonga- 
tion a, the distance between cent.ers of the filler 
particles will change by the same factors. This 
means that we assume the positions of the filler 
particles will undergo an affine deformation. Since 
the particles are quite large in comparison to 
atomic dimensions one would expect that even at 
very large stresses the unbalanced force on any 
given particle will be unable to move it far through 
the rubber matrix. Consequently, the assumption 
of an a f i e  deformation of the filler particle 
positions should be valid. 

Suppose Figure 1 represents three rubber chains 

Fig. 1. Three typical chains attached to two adjacent filler 
particles. 
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attached to two filler particles before a force is 
applied to the rubber. If the rubber is now 
stretched in the horizontal direction to a relative 
elongation a, the particles must separate so tha; the 
distance between centers is now a times larger than 
the previous value. If a is appreciable, chain A 
must rupture. Chain B might rupture if a is 
sizeable. Chain C will not rupture unless the 
value of a is quite large. Obviously, the word 
“rupture” should not be taken to mean that the 
break occurs in the chain itself. The chain may 
merely pull loose from the filler surface, instead. 

In any event, if the rubber is allowed to retract 
to its initial value and is restretched, it will appear 
softer, since the chains which broke are no longer 
resisting deformation. Consequently, the Mullins 
effect would be observed. We will show in the 
quantitative calculation given in this report that 
this process gives rise to strong enough forces to 
explain the effect. Even though the number of such 
chains which break is relatively small, the tremen- 
dous force which a chain holds just before it breaks 
causes the effect of the small number to be easily 
noticed. 

Before proceeding with the computation, it 
should be explained why a gum stock does not show 
this effect. The effect depends upon the fact that 
chains like chain A in Figure 1 must break a t  very 
low relative elongations. If chain A were merely 
tied t o  two network junction points, as would be the 
case in a system without filler, the network junc- 
tions would be pulled through the rubber matrix so 
as to keep the forces in A small. In other words, 
the network junctions do not undergo an afine 
deformation in the vicinity of a highly strained 
chain. As a result, chain A need not elongate 
much, even though the sample is deformed con- 
siderably. It will therefore not break until very 
high deformations are imposed on the sample, and 
consequently the softening effect will be very small 
at  moderate sample elongations. 

COMPUTATION 

Consider a system of long polymer chains for 
which the effects of chain ends may be neglected. 
Imbedded in this polymer is a volume fraction vf of 
spherical filler particles with total surface area S 
per unit volume. There will be certain sites on the 
filler surface to which a chain unit is attached, the 
number of such sites being N and the area per site 
u = S / N .  

It is necessary to know what the distribution of 
chain lengths is for chains attached between filler 
particles. This may be computed in the following 

way, provided one assumes gaussian chains for 
which the root mean square separation of two chain 
segments n segments apart is (a%)‘/’. We also 
assume that the primary molecular weight is much 
larger than the molecular weight between chemical 
crosslinks. 

Suppose fist that there are two parallel filler 
surfaces separated by a distance x. If a certain 
chain segment is attached to one of these surfaces, 
the chance that the nth segment along the chain 
will be within a distance Ax of the other surface is 

(3/2na2)’/’ exp { - (3x2/2&) 1 Ax (1) 

If the chain segments are taken to have a volume 
near aa, then the chance that this segment is 
attached to the surface will be approximated by 
letting Ax = a and multiplying eq. (1) by d / u .  
Therefore, the chance that the nth chain segment is 
bound to the other filler surface is approximately 

(a3/u) (3/2na2)1/2 exp { - (3z2/2na2) 1 (2) 

It is next necessary to take account of the fact 
that some segment along the chain closer than the 
nth may have already been attached to the surface. 
Since the probability that the pth segment has been 
attached is given by eq. (2) upon replacing n by p, 
one has that the chance that no prior segment has 
attached itself is 

II [l - ( U ~ / U ) ( ~ / ~ ~ U ~ ) ’ / ~  exp { - (3z2/2pu2) 1 1  (3) 

The probability that the nth segment is the first 
one along the chain to attach to the opposite sur- 
face is the product of expressions (2) and (3). 
This quantity which will be denoted as P(n,z) is 
the probability that the chain length between filler 
surfaces is n when the surfaces are a distance x 
apart. After expanding and simplifying the prod- 
uct one finds 

~ ( n , z )  = (a2/u) (3/2n)1’2 

n-1 

P = l  

exp { -y2 - (a2/a)(n)’’Z I$} (4) 
where 

y2 = 3x2/2na2 

and 

4 = (6)’” exp {(-Y 1 - Y ( ? ~ ) ‘ / ~ D  - WY)]) 
with 

~ ? ( y )  = (4/.lr)1/2J,m exp { -t2)dt 

If the rubber sample of original length Lo is 
stretched to length L, the relative elongation a will 
be L/Lo. The actual rubber between filler particles 
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must elongate more than this to compensate for the 
filler which elongates none at  all. It may be shown 
that the relative elongation a’ of the rubber between 
filler particles in the direction of stretch is related 
to a in the following way (see Appendix I) : 

a’ = (a - Z p ) / ( l  - $12) (5)  
In the remainder of this report, the relative elonga- 
tions inside the pure rubber will be designated by 
primes. 

The chain which breaks at  an extension ratio 
ac’ will be that for which n 4  = a,‘x, where n, is the 
value of n for this particular chain. One therefore 
has that the number of chains which have n = n, 
and will break at an extension ratio ac’ is 

CN(x):)P (nc,z> (6) 
where N(x)  is the number of chains between sur- 
faces separated by a distance x and the sum ex- 
tends over all possible separations. It is clear that 
N ( z )  will be 5t complex function involving the aver- 
age surface separation, size and shape of the 
particles. We shall approximate it as 

N ( X )  = N ( D / ~ )  exp { - ( p 2 / b 2 )  (x - b ) 2 )  (7) 
where b is an average surface separation. 

The parameter p in eq. (7) determines the sharp- 
ness of the distribution. If /3 = 0, all separations 
are equally probable. If 0 = 0 3 ,  only x = b 
is allowed. We shall choose @ in such a way that 
N ( a ) / N  gives the proper probability for finding sur- 
faces separated by a distance a, that is, nearly in 
contact. This particular choice is made since the 
following portions of the computations are most 
dependent upon the values a t  small surface separa- 
tions. It is easily shown in a qualitative way (see 
Appendix 11) that for spherical particles with 
radii about 150 A. and for which b/a is about 30, 
the probability of a separation less than a is of 
order This agrees with eq. (7) ,  provided B 
= 2.5. If p = 2.0, the probability is about ten 
times larger, and so p is reasonably well determined 
from even such qualitative considerations. 

The number of chains having n = n, is obtained 
by substituting from eqs. (4)  and (7)  into eq. (6)  
and replacing the summation by an integral over x. 
In carrying out this integration it must be remem- 
bered that n, = a,’x/a. The integral is not easily 
carried out without approximation. We have 
evaluated it by expanding the exponential, retaining 
only two terms of the expansion, and then expand- 
ing + in series form. The resulting series is then 
integrated term by term after ignoring the small 
variation of the factors in front of the exponentials. 

The final result is a rather involved series. To avoid 
working with such a cumbersome expression, we 
have replaced it by the following one which fits it 
within the range of interest to a few per cent. The 
number of chains having n = n, is found to be 

NP(n,) = 4.75 X 10-3N(a/b)’/’(a2/r) 

exp { 4.7(aaC’/b)I/’) (8) 

where B has been given the value of 2.5 suggested 
above. The factor 4.75 X varies inversely 
as p9 and the factor 4.7 vanes directly as p2 to a 
good approximation for 2 6 p 6 4.  

The number of chains within range dn, is NP(n,)-  
dn,. It is of more interest to know the number of 
chains which break within the range da,’. Since 
the average value of n, is obtained by replacing 
x by b one has n, = a,’(b/a) from which dn, = 
(b/a)da,’. One therefore finds that the number of 
chains which break in the extension range dac’ is 

4.75 X 10-3N(~/b)”’(a2/a)  

exp { 4.7(aac’/b)’/’~da,’ (9) 

If one is interested in the contribution of such 
chains to the retractive force in the rubber when the 
extension of the rubber is a,’, it is necessary to deter- 
mine the way in which the tension in a chain varies 
as a function of a‘/a’,. The correct expression for 
the tension F in a chain which is extended to a frac- 
tion r / m  of its maximum length is 

r/na = coth (aF/kT) - (kT/aF) (10) 

This expression may be approximated in such a 
way that, if F, is the tension in the chain at  break, 
the tension at any elongation is given by 

F = Fc(a’/ac’)/[(y + 1) - y(a’/ac’)l (11) 

where y = F,a/kT. This expression is exact at 
F = F, and becomes a progressively poorer approx- 
imation as F becomes smaller and as y is decreased. 
For y = 100 the correct value for FIFO = 0.093 at  
a’/ac’ = 0.90, while eq. ( 1 1 )  gives F/F,  = 0.082. 
Since y will usually be larger than 100, as will be 
seen later, eq. ( 1 1 )  should be satisfactory for the 
present purposes. 

Not all of the N chains should be counted in 
computing the load being held by the sample. This 
is the result of the fact that only the number of 
chains acting across a given cross section of the 
sample hold the load. The remainder of the chains 
are essentially in series with these chains and should 
not be counted. Considering a sample in the form 
of a unit cube, any cross section will have ( l / r )  
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Stcess 

Fig. 2. A schematic set of stress-strain curves illustrating the 
Mullins effect. 

filler bound chains crossing it. Therefore, N in eq. 
(9) should be replaced by (l/u) if one is interested in 
the tensile forces held by the filler bound chains. 

If a filled rubber is stretched 
for the first time to  an elongation al’, it will follow 
the stress-strain curve OFC. Upon a second 
stretch it will follow the curve OACD. If, after 
reaching point D on this curve, the rubber is again 
allowed to retract, it will follow the curve OBEDG 
on the next stretch. Using the equations derived 
here, we can now write down an expression for the 
softening effect due to prestressing. In  particular 
one can write an expression for T ~ ( c I ’ )  - T ~ ( ( Y ’ )  

where these quantities are defined in Figure 2. 
The softening represented by the quantity 

T ~ ( L Y ’ )  - T ~ ( L Y ’ )  is the result of the breaking of filler- 
chain bonds as the rubber was stretched from C to 
D during the second stretching cycle. To compute 
this quantity one replaces N by (l/o) in eq. (9), 
multiplies eq. (9) by eq. (11), and integrates the 
result, al’ 6 ac’ 6 az’. This process merely adds 
up the forces which are caused at  an extension a’ 
by filler attached chains which will subsequently 
break at extensions between all and az’. Of course, 
if one takes az‘ to be very large and all = a’, one 
will obtain the amount by which the rubber is 
stiffened a t  any elmgation a‘ by the action of the 
rubber-filler attached chains. In  practice a’ 
should never be taken larger than the ultimate 
elongation in a nonfilled rubber of comparable 
structure, since such values of a2’ are physically 
impossible. 

If one carries out the integration indicated one 
finds, upon neglecting the relatively slow variation 
of the exponential in eq. (9), 

Refer to Figure 2. 

T ~ ( f f ’ )  - T 2 ( f f ’ )  = 

4.75 x 1 0 - 3 ~ ~ ( a / b ) ’ / ~ ( a / u ) 2  (y + 1)-1 

The second logarithm in the brackets in eq. (12) 
is a correction term (usually small) needed to make 
~ l ( 1 )  - ~z(1) = 0 as it must be. It is made neces- 
sary by the fact that no provision had been made in 
previous equations for the fact that all internal 
chain forces must balance out to zero when a‘ = 1. 

APPLICATION TO SBR 

Equation (la),  which should be applicable to 
any rubber-filler system, contains four molecular 
parameters, a, F,, u, and b. However, since the 
segment length a never occurs alone, the equation 
is completely determined by three parameters, 
aFc, b/a, and a/a.  The parameter a may be evalu- 
ated from the stress-strain curve of the vulcanized 
unfilled rubber if so desired. This is done for the 
case of SBR in Appendix 111, where it is found that 
a = 4.3 A. In any case, its value is not needed for 
the application of eq. (12). 

The constants listed above may be obtained from 
a set of experimental curves such as those shown 
in Figure 2. In  particular, the two curves OAC 
and OBD allow one to determine y = aF,/kT. 
This is done as follows. 

The ratio R = ( T ~  - T J / ( T ~  - T ~ )  may be com- 
puted from the experimental data. This ratio may 
also be obtained from eq. (12) by dividing eq. (12) 
by a similar equation in which a’ is replaced by all. 

All the unknown constants except y disappear from 
this ratio, and so comparison of the experimental 
value for R with the theoretical value will give a 
numerical value for y. It is more accurate, how- 
ever, to compute R from the experimental data a t  
various a‘ values and plot these values of R as a 
function of a’. Assuming a value for y, one can 
also plot a theoretical curve for the variation of R 
with a‘. The value of y which gives rise to the best 
agreement with experiment is the correct value. 

This has been done for some data of Mullins3 
for SBR containing 50 parts of MPC black. The 
values al’ = 8.5 and aZ’ = 13.5 were used. These 
values correspond to  a1 and a:, values of 4 and 6, 
respectively. The results are shown in Figure 3, 
where the points are from the experimental data. 
It is clear that the agreement between the experi- 
mental and theoretical curves leaves something to 
be desired. However, the upper portion of the 
experimental curve shown there is extremely sen- 
sitive to a small amount of permanent set which 
plagues this type of measurement. In  addition, 
the upper portion of the curve will be lowered some- 
what by a second extension to a1 and SO the exact 
experimental values in this region are in doubt. It 
appears that y should be taken to be about 200, 
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Fig. 3. Comparison of experiment (points) and theory for 
the determination of y at the y values indicated on the 
curves. 

although it might possibly be as low as 100 or as 
high as 300. Fortunately, its exact value is not 
extremely critical in determining the overall shapes 
of the experimental curves. 

The determination of a/b is best made by ex- 
amining the curve OFCDG of Figure 2. From eq. 
(12) it is seen that, if +( all) is the function 

{at In [ az’(1 + 7-1) - a 
a1’(l + 7-1) - a 

in eq. (12), then a plot of In Q = In [ ( T ~  - T ~ ) /  

+(al’)] vs. (al’)’’’ will give a straight line of slope 
4.7(a/b)”’. The values of rC - rB are obtained 
from the experimental curves OFD and OBED and 
the values of +(al’) are obtained by setting a’ = 
al’ and using y = 200. Making use of the same 
experimental data as before, one obtains the 
straight line shown in Figure 4. The slope of this 
line gives a value for b/a of 29. 

v 2  
1.6 2 .o 2.9 2.8  

Fig. 4. Comparison of theory (points) and experiment 
showing the Mullins effect in SBR loaded with 50 parts of 
MPC black. 

Finally, the value of (u/uz) is chosen so that eq. 
(12) gives the experimental value for 71 - 7 2  at 
some arbitrary value of a’ = all. For the greatest 
accuracy, one should probably determine (a/oz) 
for the data at a rather large value of a’. In the 
present case, the theoretical curve fits the experi- 
mental so well that the value of ( a / d )  does not vary 
more than 6%, no matter which value of a‘ is 
selected for its evaluation. One finds that (./a) 
= 10 X 10-8cm. 

DISCUSSION 

Having determined the constants y, (bla) ,  and 
u/a, one can use eq. (12) to plot any set of curves 
such as those in Figure 2 for this rubber-filler 
system. To test the equation, the curves of Figure 
5 have been plotted. The full curves are those 
found from experiment by Mullins.2 The points 
were obtained from eq. (12) by use of the constants 
found in the previous section. It is clear that sub- 
stantial agreement is obtained. Furthermore! this 
agreement is not just a fortuitous coincidence which 
occurs because of our choice of the three param- 
eters. Variation of these parameters within 
their limits of error does not seriously harm the 
agreement found in Figure 5. Moreover, we will 
next show that these constants are entirely reason- 
able in magnitude. 

If a is given the 
value found in Appendix II,4.3 A., then b will equal 
130 A. If one pictures the MPC black particles to 
be spherical with radius 125 A. and placed on a cubic 
lattice in the rubber, the distance between their 
centers will be about 330 A. It would therefore 

First, consider the ratio b/a .  

b0  - 

40  - 

20-  

2 3 Y 5 
0 

Fig. 5. A plot of the experimental data in a form useable for 
the determination of b/a. 
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appear that the value found for b, the average dis- 
tance between surfaces in any one direction in the 
matrix, is not unreasonable. 

Using the same value for a, one finds that the 
surface area per attachment, Q is about 44 A.2. 
This again is a reasonable value. Although Frisch 
et a1.6 have found an area of about 900 A.2 for solu- 
tion adsorption of polystyrene on carbon black, and 
others7v8 have found similar values for adsorption of 
rubbers from solution, not too much importance 
should be given to these values, since there is no 
real reason to believe that the rubber-filler bonds 
discussed here are the same as in the case of solution 
adsorption. 

The value of the strength of the weakest point 
in the chain may be found from the fact that y = 
(F,a/kT) = 200. This gives a value for F, of 
about 2 X dynes. It is not known what 
force the C-C bond can hold for an appreciable 
time, and so one is unable to say from this informa- 
tion alone whether the chain breaks loose at  the 
filler particle or whether it breaks along the chain. 
The answer to this question may be determined in 
the following way. 

Equation (10) gives the chain end displacement, 
r ,  in terms of the force applied to it. The energy 
stored in the chain at  break is obtained by mul- 
tiplying dr by F and integrating over r from r = 
0 to the value of r at the breaking point. This is 
easily done, and the result for the elastic energy 
stored in the chain at break is 

nkT[ln (ylsinh y )  + y ctnh y - 11 (13) 

The elastic energy per bond E, is then 

E, = kT[ln (ylsinh y) + y ctnh y - I ]  (14) 
g kT[ln (27) - I ]  

where the approximate form is accurate to better 
than a few per cent for y > 10. With y = 200 
one finds EJkT = 5.0. This is a relatively small 
amount of energy compared to that needed to break 
a C-C bond, about 60 kcal./mole, and so the effect 
of thermal energy must also be considered. 

If a bond is to break at a temperature T in a 
reasonable length of time, say lo2 sec., then the 
product of the bond vibration frequency, about 
1012, by the factor exp { -Ee/kT) must be about 
0.01, where E, is the thermal energy needed to break 
the bond. We therefore have 

exp { -E,/kT) g 10-14 

E,/LT g 32 
from which 

One therefore has that the bond concerned here 
requires an energy E to break, which is given by 

E/kT 6 (E,/kT) + (EJkT) 37 (15) 

Therefore E is about 22 kcal./mole. This is to be 
compared with the C-C bond energy of about 60 
kcal./mole. 

The above result indicates that the weak link is 
the attachment at  the filler surface. An examina- 
tion of eq. (14) shows that any reasonable value of 
y will not alter the above result by much. In addi- 
tion, the assumption that the elastic energy is evenly 
distributed along the chain is not a critical factor. 
It would therefore appear quite certain that the 
chain itself does not break but that the break occurs 
at the point of attachment. 

The energy of the filler-rubber bond is not 
accurately given by the above computation, how- 
ever. This is a result of the fact that eq. (14) 
was derived only for the rubber chain, and the bond 
at  -the filler surface will certainly not comply with 
eq. (10). About all one can say is that the energy 
needed to break this bond is greater than 20 kcal./ 
mole or it would break by itself at  room temperature. 
Temperature variation studies of the Mullins effect 
will be needed to place an upper limit on this value 
as well as to raise the lower limit. 

At first thought it seems possible to determine the 
strength of the filler-rubber bond from the enclosed 
area of loops such as OACDEO in Figure 2, since 
this area is a measure of the energy lost by break- 
ing bonds along the portion of the curve CD in 
Figure 2. This process is not as simple as it seems, 
however. Although one can easily calculate the 
number of chains which are torn loose from the 
filler, the energy loss due to these chains is not 
simple to interpret. First, the energy per chain is 
stored in the total n bonds of the chain plus the 
bonds at  the filler surface. Although one can show 
that the elastic plus thermal energy per bond is less 
than 60 kcal., it is impossible to obtain the exact 
energy one should assign to the filler-rubber bond. 
One is therefore no better off than with the previous 
method of calculation. In fact, it turns out that 
the result obtained from the loop area is much 
more sensitive to the exact value of y than was the 
previous method. It therefore appears that the 
filled-rubber bond energy is not obtainable from 
the present data taken only at  one temperature. 

The present theory provides a basis for a fruit- 
ful experimental approach to the problem of rubber 
reinforcement. It should be possible to char- 
acterize accurately the filler-rubber bond by the 
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two constants F,, the force needed to break it, and 
u, the area per attachment. For poor reinforcing 
fillers, F ,  should be smaller and u larger than the 
values found for MPC black. In  addition, the 
temperature variation of u and F,  may possibly 
allow one to compute the energy of the rubber- 
filler bond. The quantity b is a measure of the 
distance between filler particles. For a given 
filler size and loading, b should increase as the filler 
dispersion becomes better. 

APPENDIX I 

Consider the two filler particles shown ‘n Figure 
6. Although it is not necessary to do so, we 
assume them to be cubical in shape and to be dis- 
persed uniformly through the rubber. Suppose 
the rubber is stretched so that the centers of the two 
particles separate a distance AL. Using the 
definition of a, a‘ and the distances LO and Lo’ 
shown in Figure 6, one has 

AL = (1 - a)Lo 

and 

AL = (1 - a’)Lo’ 

But since Lo’ = Lo(1 - v,”’), one can equate the 
expressions for AL and cancel out the distance Lo. 
The resulting equation can be s o h d  for a’ to give 
eq. (5)  in the text. 

n=ioo I 

Fig. 6. A schematic diagram for the computation carried out 
in Appendix I. 

APPENDIX I1 

Consider two tiller particles with radii r. Sup- 
pose that their separation may have any value be- 
tween zero and 2b with equal probability. It is 
desired to  find the probability that a point on the 
surface of one of the spheres is within a distance a 
of a point on the other sphere. This may be done 
qualitatively as follows. 

The probability that the two spheres are within a 
distance a of touching is a/2b. The surface area 
of one sphere which is within a distance a of the 
surface of the other sphere when the spheres are 
touching is 2nra. When the spheres have sepa- 
rated to  a distance a, none of the area is within a 
distance a of the other sphere. As an approxima- 
tion, say that an area m a  of one sphere is within a 
distance a of the other sphere when the sphere 
separation is a or less. It will be zero when the 
separation is greater than a. 

When any area a t  all of one sphere is within a 
distance a of the other sphere, the fraction of the 
hemispherical area within a distance a will be 
(?rra/2?rr2). This fraction, when multiplied by the 
probability that the sphere separation is a or less, 
will give the desired probability. It is (a2/4rb). 
If a is taken to be 4 A. and b and r to be 150 A. 
this probability is given to  be 1.8 X 

APPENDIX 111 

The segment length, a, can be found from a 
consideration of the stress-strain curve for SBR. 
Treloarg has shown that the James-Guth equation 
for the tensile stress in a gum vulcanizate can be 
written to good approximation as 

T/vkT = (I/&) [=CC-’ (~K)  - ( 3 K / a 2 ) ]  (16) 

with K = (l/n)”*. The quantity n is the number 
of segments per network chain and v is the effective 
number of network chains in unit volume. 

If one plots eq. (16) in the form r/vkT vs. a for 
various values of K ,  the resultant curves can be 
compared with actual experimental data plotted 
in the form T/(const.) vs. a. The constant in the 
experimental plot is chosen so as to fit the theoretical 

t fe+ - L.- 
Fig. 7. Comparison of the experimental stress-strain curve 

for SBR gum stock (points) with the James-Guth equa- 
tion. 
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curves at  low a values where all the curves must 
coincide. By comparing the experimental curve 
with the theoretical curves, one can choose the 
proper value of K to obtain the best fit. This value 
of K ,  in turn, yields a value for the number n of 
segments per network chain in the rubber upon 
which measurements were taken. These plots are 
shown in Figure 7. The experimental data are 
those of Treloarg for SBR gum stock. 

The appropriate value of n appears to be about 
140. In addition, vLT, the constant needed for the 
experimental curve, is about 4.3 X 106 dynes/cm2. 
If one assumes that the original gum stock 
had a number average molecular weight of 35,000, 
one can then compute the molecular weight of a 
network chain M ,  from the value of Y. This yields 
a value of about 4800 for M,. It is therefore kiiown 
that a chain of this molecular weight contains 
about 140 segments. 

To find a, one makes use of the factlo that the 
mean square end-to-end distance of nearly all 
common polymers is known experimentally to con- 
form with the relation R2 = (7.5 X 10-9)2M. 
Since one also has that R 2  = nu2, one can equate 
these two expressions for R2 and replace n and M 
by the values found above. One then finds that a 
is about 4.3 A. 
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Synopsis 
A molecular theory for the softening of filled rdbbers 

which is caused by prestressing is presented. It is based 
upon the assumption that the centers of the filler particles 
are displaced in an affine manner during deformation of the 
rubber. Those network chains which are fastened at both 
ends to filler particles will break when the filler particles 
have separated enough to stretch the chains to near full 

elongation. The loss of these chains causes a prestressed 
rubber to exhibit a much lower modulus than did the 
original rubber. Equations are derived to describe this 
phenomena and are tested by comparing with data for black 
filled synthetic rubber. Good agreement is found if the 
filler surface area per chain attachment is taken as 44 A.2 
and if the strength of the chain is 2 X 10-4 dynes. It is 
shown that the chains brcak loose from the filler particle 
rather than breaking at C -C bonds along the chain. The 
theory appears to offer a. convenient tool for systematic 
studies of rubber-filler interactions. 

Rdsumd 
On presente une thborie molbculaire de l’amollissement des 

caoutchoucs contenant des charges par suite d’une extension 
prbalable. Elle se base sur la supposition que les particules 
de remplissage se dbplacent d’une maniere progressive au 
cours de la deformation du caoutchouc. Ce reseau de 
chaines qui sont liees a chaque extr6miG 11 des particules 
de remplissage rompront lorsque ces particules de remplis- 
sage se sont separbes suffisamment que pour Btendre les 
chaines tout pr&s de leur elongation maximum. La perte 
de ces chaines provoque l’apparition dans un caoutchouc 
btir6 d’un module beaucoup plus faible que celui observe 
le caoutchouc initial. On dbduit des bquations pour 
decrire ce phbnomene et  on les contrble avec les rbsultats 
obtenus sur du caoutchouc synthbtique chargb au noir 
animal. On trouve un bon accord si on prend pour surface 
de la charge rattachbe 11 la chaine 44 e t  si la tension de la 
chaine est de 2 X On montre que la chaine 
rompt plut6t 11 la hauteur d’une particule de remplissage 
plutbt qu’h la hauteur d’une liaison C C  de la chaine. 
La thborie semble .pouvoir constituer un outil adbquat 
pour l’btude systbmatique des interactions caoutchouc- 
particules de charge. 

dynes. 

Zusammenfassung 
Eine molekulare Theorie fur die Erweichung von gefiilltem 

Kautschuk durch Spannungsvorbehandlung wird ent- 
wickelt. Sie beruht auf der Annahme, dass die Zentren 
der Teilchen des Fullstoffes wahrend der Verformung des 
Kautechuks eine affine Verschiebung erfahren. Diejenigen 
Netzketten, die an beiden Enden an Fullstoffteilchen 
verankert sind, werden zerreissen, sobald die Fullstoff- 
teilchen weit genug voneinander entfernt wurden, urn die 
Ketten nahezu auf volle Elongation zu strecken. Der 
Verlust dieser Ketten fuhrt dazu, dass ein Spannungs- 
vorbehandelter Kautschuk einen vie1 niedrigeren Modul 
aufweist als der urspriingliche Kautschuk. Gleichungen 
zur Beschreibung dieser Erscheinung werden abgeleitet 
und durch Vergleich mit Ergebnissen an russgefulltem, 
synthetischen Kautschuk iiberpruft. Gute Ubereinstim- 
mung wird unter der Annahme gefunden, dass die Full- 
stoffoberflache pro Kettenhaftstelle 44 Aa betragt und die 
Festigkeit der Kette 2 X lo-‘ dyn ist. Es wird gezeigt, 
dass die Ketten von den Fiillstoffteilchen abgetrennt 
werden, eher als dass C-C-Bindungen in der Kette gespalten 
werden. Die Theorie scheint ein brauchbares Werkzeug 
fur eine systematische Untersuchung der Wechselwirkung 
zwischen Kautschuk und Fiillstoff zu liefern. 
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